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Using this function it is easy to find the best tangential 
connexion to the high order part of the H scattering curve. 
One has to leave out as many low-order points of this part 
as necessary before obtaining a H +6 curve that crosses the 
H curve. The results for g = 0.3, 0.5, and 0.7 are summarized 
in Table 1. The second point of each form factor table is the 
beginning of the high order part of the H table preserved. 
The coefficients at found from the first three points of each 
table are compared to those calculated for the first points 
of the H-1 and H tables. Fig. 2 shows the three resulting 
scattering curves. The scattering factor tables for H and 
H -  t plotted for comparison in Fig. 2 are taken from Vol. 
III of the International Tables for X-ray Crystallography 
(1962), because the tables in Vol. IV (1974) give poor curves 
owing to rounding effects. 
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Fig. 2. Scattering factor curves for H +°'3, H +°'s, n +°'7 using 
high-order tails of the H curve starting at 0.4, 0.5 and 0.6 N-t  
respectively and using equation (1) for interpolation. 
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1237 four-dimensional space-group types of the 'low-symmetry crystal classes' have been listed by Kuntse- 
vich & Belov [Kristallografiya (1971). 16, 5-17, 268-272]. Comparison of this list with the results of Brown, 
Billow, Neubiiser, Wondratschek, and Zassenhaus shows that three space-group types are listed twice and 
one space-group type is missing. The crystal classes considered by Kuntsevich & Belov thus contain 1235 of 
the 4783 types of space groups of R4. 

Crystallography in four-dimensional space R4 has drawn 
increasing interest during the last years. Reasons for this 
may be: possible applications in physics, better insight into 
dimension-independent features of crystallographic ob- 
jects, mathematical interest in integer matrix groups, and 
the availability of large computers for the performance of 
the necessary calculations. 

For the crystal families, crystal systems, crystal classes, 
and Bravais-types we refer to Wondratschek, Billow & 
Neubtiser (1971) and the literature quoted there. In a joint 
project of Brown, Btilow, NeubiJser, Wondratschek, and 
Zassenhaus (referred to as BBNWZ) also a complete list 
of all affine equivalence classes of space groups of R4 was 
determined, their number being 4783. 

Those space groups of R4 for which the linear parts of 
all symmetry operations have order not exceeding two, i.e. 
those corresponding to the triclinic to orthorhombic space 
groups in R3 had been derived and listed by Kunstevich & 
Belov (1971) (referred to as KB), using geometric arguments. 
They found 1237 types of such space groups. 

Although KB did admirable work, errors are almost un- 
avoidable in computations by hand. There are discrepancies 
in relation to the tables of BBNWZ, which contain only 
1235 affinely-non equivalent space group types of this kind. 

A closer inspection shows the following discrepancies. 
In KB crystal class VIII, X, and XI the KB numbers of 
space-group types exceed the BBNWZ numbers of space- 
group types by one, in XV BBNWZ have listed one space- 
group type more than have KB. 

KB characterize their space-group types by certain sets 
of generators. The symbols used are slightly modified 
Hermann (1949) symbols. The generating matrices of a 
representation of each space-group type can be determined 
easily from these symbols, e.g. space-group type VIII, 43 

(i AI ° ° ° °  = 0 1 0  
0 0 1  
0 0 0  

A2= 0 1 0  
0 0 1  
0 0 0  
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and space-group type VIII, 45 (;000 
Bl= 0 0 1 0  ¼ 

0 0 I  
0 0 0  

B~= (i ° 
 ooo o 
0 1 0  
0 0 1  
0 0 0  

i °° o o t  
0 0 0  

With x,y,z,u used as coordinates these matrices give 
~,¼+Y,¼+z,u and ¼+x,Y,¼+z,u for VIII, 43 or £,¼+ 
y,¼ + z,½ + u and ¼ + x,P,¼ + z,½ + u for VIII, 45 respectively 
in the conventional symbols of International Tables for 
X-ray Crystallography (1952). 

It is easily verified that the integer matrix 

( i t  
1 0 0 0 0 

1 0 0 
T= 0 1 0 

0 - 2  1 
0 0 0 

transforms the generators At into the generators B.  that 
is Bl = T-IAl T. Therefore, by changing the basis as. a2, a3, a4 
to b~=al, b2 = a2, b3=aa-2a4,  b 4 : a 4 ,  the group VIII, 45 
is obtained from VIII, 43. This shows that VIII, 43 and 
VIII, 45 describe the same space-group type; they are only 
referred to different coordinate bases. Exactly the same 
holds for the pairs X, 99 and X, 101 as well as XI, 45 and 
XI, 46 with the same T as the transforming matrix. As a 
result of this the entries VIII 45, X 101, and XI 46 have to 
be removed from the KB Table 4. 

On the other hand, KB list in Table 4, crystal class XV, 
only 62 space-group types, whereas in the BBNWZ com- 
puter determination 63 space-group types in this crystal 
class were found. Here to the F6 lattice (U lattice type of 
Wondratschek, B i i l ow& Neubtiser, 1971) belong three 
space-group types of which KB list only two. The space 
group generated b'y 

0 , 1 ,221, 11,221,2  ° 0 1 0  
0 0 ] "  
0 0 0  

i °° 
21/211/212/221/2= 0 0 1 0 

0 0 T  
0 0 0  

is missing; it should be added under No. 61a. 
In No. 60 in each set of parallel twofold 'hyper axes' 

2211, 2121, 2112, 1212, 1221, and 1122 there occur real 
rotations. In 61 in three of the six sets of twofold 'hyper 
axes' there occur real rotations, the other three containing 
screw rotations only. Finally in 61a there are two sets in 
which real rotations occur, whereas in the other four sets 
only screw rotations can be found. This shows immediately 
geometrically that the three space groups considered are 
non-equivalent (the original derivation by BBNWZ had 
been an algebraic one). 
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A method is proposed by which a protein model with acceptable stereochemistry can be fitted to a set of 
atomic coordinates. By expressing all constraints in terms of distances between pairs of atoms it is possible 
to enforce any desired stereochemistry in a physically realistic manner, and at the same time to substantially 
reduce computing time. Application of the technique to thermolysin is described. The method has been 
independently developed and applied to insulin by E. J. Dodson, N. W. Isaacs & J. S. Rollett [Acta Cryst. 
(1976). A32, 311-315]. 

The problem of obtaining a model of a protein which is a 
best fit to a.set of observed coordinates and at the same time 
adheres to a specified stereochemistry has been discussed 
by a number of authors. In the methods of Diamond (1966) 
and Warme, G~ & Scheraga (1972), bond lengths and angles 
are, in general, fixed, and model fitting is achieved by allow- 
ing specified dihedral angles to vary. However, in real 
polypeptides, all bond lengths and angles may deviate some- 
what from their idealized values, and in order to obtain a 

satisfactory representation of a protein it is desirable that 
such deviations be allowed. Hermans & McQueen (1974) 
have suggested that such variations from idealized stereo- 
chemistry can be incorporated by a method of ' local change' 
in which one atom is adjusted at a time in a cyclic process. 
Freer, Alden, Carter & Kraut (1975) have also used, in the 
refinement of HiPIP, a cyclic refinement of the model in 
which deviations in bond lengths and angles from their 
standard values are minimized. 


